The Structure of Positive Decompositions of Exponential Operators
نویسنده
چکیده
The solution of many physical evolution equations can be expressed as an exponential of two or more operators acting on initial data. Accurate solutions can be systematically derived by decomposing the exponential in a product form. For time-reversible equations, such as the Hamilton or the Schrödinger equation, it is immaterial whether or not the decomposition coefficients are positive. In fact, most symplectic algorithms for solving classical dynamics contain some negative coefficients. For time-irreversible systems, such as the Fokker-Planck equation or the quantum statistical propagator, only positive-coefficient decompositions, which respect the time-irreversibility of the diffusion kernel, can yield practical algorithms. These positive time steps only, forward decompositions, are a highly effective class of factorization algorithms. This work introduce a framework for understanding the structure of these algorithms. By a suitable representation of the factorization coefficients, we show that specific error terms and order conditions can be solved analytically. Using this framework, we can go beyond the Sheng-Suzuki theorem and derive a lower bound for the error coefficient eV TV . By generalizing the framework perturbatively, we can further prove that it is not possible to have a sixth order forward algorithm by including only the commutator [V TV ] ≡ [V, [T, V ]]. The pattern of these higher order forward algorithms is that in going from the (2n) to the (2n+2) order, one must include a new commutator [V T V ] in the decomposition process.
منابع مشابه
Comment on "Structure of positive decompositions of exponential operators".
An elementary proof is shown on the necessary existence of negative coefficients in splitting methods of order p > or = 3.
متن کاملStructure of positive decompositions of exponential operators.
The solution of many physical evolution equations can be expressed as an exponential of two or more operators acting on initial data. Accurate solutions can be systematically derived by decomposing the exponential in a product form. For time-reversible equations, such as the Hamilton or the Schrödinger equation, it is immaterial whether or not the decomposition coefficients are positive. In fac...
متن کاملPositive Decompositions of Exponential Operators
The solution of many physical evolution equations can be expressed as an exponential of two or more operators. Approximate solutions can be systematically derived by decomposing the exponential in a product form. For time-reversible equations, such as the Hamilton or the Schrödinger equation, it is immaterial whether the decomposition coefficients are positive or negative. For timeirreversible ...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کامل